ANX-PR/CL/001-01
LEARNING GUIDE

SUBJECT
93001072 - Machine learning lab

DEGREE PROGRAMME
09AQ - Master Universitario En Ingenieria De Telecomunicacion

ACADEMIC YEAR & SEMESTER
2018/19 - Semester 1
Index

Learning guide

1. Description...1
2. Faculty...1
3. Prior knowledge recommended to take the subject..2
4. Skills and learning outcomes ...2
5. Brief description of the subject and syllabus ...3
6. Schedule..6
7. Activities and assessment criteria..8
8. Teaching resources...10
1. Description

1.1. Subject details

<table>
<thead>
<tr>
<th>Name of the subject</th>
<th>93001072 - Machine learning lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of credits</td>
<td>4.5 ECTS</td>
</tr>
<tr>
<td>Type</td>
<td>Optional</td>
</tr>
<tr>
<td>Academic year of the programme</td>
<td>Second year</td>
</tr>
<tr>
<td>Semester of tuition</td>
<td>Semester 3</td>
</tr>
<tr>
<td>Tuition period</td>
<td>September-January</td>
</tr>
<tr>
<td>Tuition languages</td>
<td>English</td>
</tr>
<tr>
<td>Degree programme</td>
<td>09AQ - Master universitario en ingenieria de telecomunicacion</td>
</tr>
<tr>
<td>Centre</td>
<td>09 - Escuela Tecnica Superior de Ingenieros de Telecomunicacion</td>
</tr>
<tr>
<td>Academic year</td>
<td>2018-19</td>
</tr>
</tbody>
</table>

2. Faculty

2.1. Faculty members with subject teaching role

<table>
<thead>
<tr>
<th>Name and surname</th>
<th>Office/Room</th>
<th>Email</th>
<th>Tutoring hours *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luis Alfonso Hernandez Gomez (Subject coordinator)</td>
<td>C-330</td>
<td>luisalfonso.hernandez@upm.es</td>
<td>Sin horario. Appointment arranged by email</td>
</tr>
<tr>
<td>Eduardo Lopez Gonzalo</td>
<td>C-330</td>
<td>eduardo.lopez@upm.es</td>
<td>Sin horario. Appointment arranged by email</td>
</tr>
</tbody>
</table>

* The tutoring schedule is indicative and subject to possible changes. Please check tutoring times with the faculty member in charge.
3. Prior knowledge recommended to take the subject

3.1. Recommended (passed) subjects

El plan de estudios Master Universitario en Ingeniería de Telecomunicacion no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Other recommended learning outcomes

- Previous exposure to a programming language, such as MATLAB, R or Python

- It is highly recommended to follow this Lab simultaneously with the subject Predictive and Descriptive Learning

4. Skills and learning outcomes *

4.1. Skills to be learned

CG1 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CG2 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

CG4 - Que los estudiantes sepan comunicar sus conclusiones ?y los conocimientos y razones últimas que las sustentan? a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CG5 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

CT1 - Capacidad para comprender los contenidos de clases magistrales, conferencias y seminarios en lengua inglesa.
CT3 - Capacidad para adoptar soluciones creativas que satisfagan adecuadamente las diferentes necesidades planteadas.

CT4 - Capacidad para trabajar de forma efectiva como individuo, organizando y planificando su propio trabajo, de forma independiente o como miembro de un equipo.

CT5 - Capacidad para gestionar la información, identificando las fuentes necesarias, los principales tipos de documentos técnicos y científicos, de una manera adecuada y eficiente.

4.2. Learning outcomes

RA305 - Capability to design, develop and evaluate machine-learning techniques for a wide range of application areas

* The Learning Guides should reflect the Skills and Learning Outcomes in the same way as indicated in the Degree Verification Memory. For this reason, they have not been translated into English and appear in Spanish.

5. Brief description of the subject and syllabus

5.1. Brief description of the subject

In this laboratory students will learn how to apply the variety of Machine Learning methods presented in the Predictive and Descriptive Learning course to practical scenarios. Students will practice using scientifically-oriented processing environments and most common programming languages and machine learning libraries (TensorFlow, Keras, Python scikit-learn, ML libraries in R).

Along the course students will address practical problems on the application of the variety of Machine Learning methods presented in the Predictive and Descriptive Learning course. Experimental activities will cover both predictive or supervised learning (from Deep Learning -Feed-forward, Convolutional Networks, Recurrent Networks- to more classical linear and logistic regression or random forest and SVM) and descriptive or unsupervised prevised learning (principal component analysis, t-SNE and cluster analysis). Several realistic and practical scenarios and use cases will be addressed (as those proposed in Kaggle competition, www.kaggle.com). Students will practice using scientifically-oriented languages and cloud environments, mainly working with Python and R languages. Through all lab activities students will have to gain practice on model accuracy using cross-validation and on how to draw precise conclusions and valuable interpretations from machine learning results and models.

The students will acquire the skill to apply the variety of Machine Learning methods on to practical scenarios. Main
course outcome will be to consolidate the theoretical study of machine learning techniques along this Master Programme. Through hands-on experience case studies students will learn how to select and accurately assess the performance evaluation of machine learning methods. They will also acquire solid criteria on what could be best model for a given data and task as well to be able to draw precise conclusions and interpretations from experimental results. By the end of the course, students should be able to:

- Understand how to apply the most used models and techniques for predictive and descriptive learning to different real scenarios.

- Design a proper experimental methodology for accurately assessing and gaining knowledge from the use of each one of the different machine learning techniques.

- Work with both scientifically-oriented processing environments and cluster computing frameworks for big data processing that can be used in a wide range of applications in science and industry.

5.2. Syllabus

1. Introduction to Machine Learning Lab
 1.1. Designing a Machine Learning System
 1.2. Introducing Python for DataScience and Machine Learning

2. Introduction to Deep Learning
 2.1. Simple Neural Network in TensorFlow (Basic Deep Learning Design Methodology)
 2.2. Feed-Forward Neural Networks (TensorFlow and Keras)
 2.3. Convolutional Networks for Images and Signals (TensorFlow and Keras)
 2.4. Recurrent Neural Networks: Signal and Natural Language Processing use cases (Keras)
 2.5. Advanced Deep Learning architectures

3. Linear Regression
 3.1. Developing interpretable Linear Regression models

4. Classification
 4.1. Developing and understanding Logistic Regression models

5. Resampling methods
5.1. Using Cross-Validation and Bootstrap

6. Tree-Based Methods
 6.1. Decision trees, Bagging, Random Forests and Boosting

7. Support Vector Machines
 7.1. Kernels and Support Vector Machines

8. Descriptive Learning
 8.1. Principal Components Analysis, t-SNE, K-means and Hierarchical Clustering

9. Building Machine Learning Pipelines
6. Schedule

6.1. Subject schedule*

<table>
<thead>
<tr>
<th>Week</th>
<th>Face-to-face classroom activities</th>
<th>Face-to-face laboratory activities</th>
<th>Other face-to-face activities</th>
<th>Assessment activities</th>
</tr>
</thead>
</table>
| 1 | Introduction to Machine Learning Systems
 Duration: 03:00
 Lecture | | | |
| 2 | Python for DataScience and Machine Learning
 Duration: 03:00
 Laboratory assignments | | | |
| 3 | Simple Neural Networks in TensorFlow
 Duration: 03:00
 Laboratory assignments | | | |
| 4 | Feed-forward Networks in TensorFlow and Keras
 Duration: 03:00
 Laboratory assignments | | | |
| 5 | Convolutional Networks for Images and Signals
 Duration: 03:00
 Laboratory assignments | | | |
| 6 | RNN for Signals and NLP
 Duration: 03:00
 Laboratory assignments | | | |
| 7 | Advanced Deep Learning
 Duration: 01:00
 Lecture | Developing Combined Deep Learning models
 Duration: 02:00
 Laboratory assignments | | |
| 8 | Linear and Logistic Regression Models
 Duration: 03:00
 Laboratory assignments | | | |
| 9 | Linear and Logistic Regression Models
 Duration: 03:00
 Laboratory assignments | | Evaluation: Developing Deep Learning models
 Individual presentation
 Continuous assessment
 Duration: 00:10 | |
| 10 | Resampling methods
 Duration: 03:00
 Laboratory assignments | | | |
| 11 | Tree-based models
 Duration: 03:00
 Laboratory assignments | | | |
| 12 | Support Vector Machines
 Duration: 03:00
 Laboratory assignments | | | |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 13 | Descriptive Learning
Duration: 03:00
Laboratory assignments |
| 14 | Building Machine Learning Pipelines
Duration: 01:00
Laboratory assignments |
| 15 | Building Machine Learning Pipelines
Duration: 02:00
Laboratory assignments |
| 16 | Final project evaluation
Group presentation
Continuous assessment
Duration: 00:15
Evaluation: Developing Deep Learning models
Individual presentation
Final examination
Duration: 00:10
Final project evaluation
Group presentation
Final examination
Duration: 00:15 |

The independent study hours are training activities during which students should spend time on individual study or individual assignments.

Depending on the programme study plan, total values will be calculated according to the ECTS credit unit as 26/27 hours of student face-to-face contact and independent study time.

* The subject schedule is based on a previous theoretical planning of the subject plan and might go through experience some unexpected changes along throughout the academic year.
7. Activities and assessment criteria

7.1. Assessment activities

7.1.1. Continuous assessment

<table>
<thead>
<tr>
<th>Week</th>
<th>Description</th>
<th>Modality</th>
<th>Type</th>
<th>Duration</th>
<th>Weight</th>
<th>Minimum grade</th>
<th>Evaluated skills</th>
</tr>
</thead>
</table>
| 9 | Evaluation: Developing Deep Learning models | Individual | Face-to-face | 00:10 | 40% | / 10 | CG1
| | | presentation | | | | | CG2
| | | | | | | | CG4
| | | | | | | | CG5
| | | | | | | | CT1
| | | | | | | | CT3
| | | | | | | | CT4
| | | | | | | | CT5 |
| 17 | Final project evaluation | Group | Face-to-face | 00:15 | 60% | / 10 | CG1
| | | presentation | | | | | CG2
| | | | | | | | CG4
| | | | | | | | CG5
| | | | | | | | CT1
| | | | | | | | CT3
| | | | | | | | CT4
| | | | | | | | CT5 |

7.1.2. Final examination

<table>
<thead>
<tr>
<th>Week</th>
<th>Description</th>
<th>Modality</th>
<th>Type</th>
<th>Duration</th>
<th>Weight</th>
<th>Minimum grade</th>
<th>Evaluated skills</th>
</tr>
</thead>
</table>
| 17 | Evaluation: Developing Deep Learning models | Individual | Face-to-face | 00:10 | 40% | / 10 | CG1
| | | presentation | | | | | CG2
| | | | | | | | CG4
| | | | | | | | CG5
| | | | | | | | CT1
| | | | | | | | CT3
| | | | | | | | CT4
| | | | | | | | CT5 |
| 17 | Final project evaluation | Group | Face-to-face | 00:15 | 60% | / 10 | CG1
| | | presentation | | | | | CG2
| | | | | | | | CG4
| | | | | | | | CG5
| | | | | | | | CT1
| | | | | | | | CT3
| | | | | | | | CT4
| | | | | | | | CT5 |
7.1.3. Referred (re-sit) examination

<table>
<thead>
<tr>
<th>Description</th>
<th>Modality</th>
<th>Type</th>
<th>Duration</th>
<th>Weight</th>
<th>Minimum grade</th>
<th>Evaluated skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation: Developing Deep Learning models</td>
<td>Individual</td>
<td>Face-to-face</td>
<td>00:10</td>
<td>40%</td>
<td>/ 10</td>
<td>CG1, CG2, CG4, CG5, CT1, CT3, CT4, CT5</td>
</tr>
<tr>
<td>Final project evaluation</td>
<td>Group presentation</td>
<td>Face-to-face</td>
<td>00:15</td>
<td>60%</td>
<td>/ 10</td>
<td>CG1, CG2, CG4, CG5, CT1, CT3, CT4, CT5</td>
</tr>
</tbody>
</table>

7.2. Assessment criteria

Students will be qualified through continuous evaluation by default. According to the Normativa de Evaluación del Aprendizaje de la Universidad Politécnica de Madrid, students willing to renounce to continuous evaluation must complete the Moodle task entitled "Renounce to continuous evaluation" before the fourth week of the semester (deadline will be announced in Moodle).

Evaluation will assess if students have acquired all the competences of the subject. Thus, evaluation through final assessment will be carried out considering all the evaluation techniques used in continuous evaluation (EX, ET, TG, etc.), and will be celebrated in the exam period approved by Junta de Escuela for the current academic semester and year. Evaluation activities that assess learning outcomes that cannot be evaluated through a single exam can be carried out along the semester.

Extraordinary examination will be carried out exclusively by the final assessment method.

Continuous assessment will consist of:
- Individual presentations to demonstrate skills in developing deep learning models will be made by mid-semester (40% of final grade).

- A final collaborative project will be developed to be evaluated by the end of the semester. Evaluation will cover both individual achievements in Machine Learning and the development of teamwork skills, as this is one of the learning objectives for the course (final project assessment will represent 60% of the final grade).

Final assessment:

Those students that have renounced to continuous evaluation should address a final examination including both individual presentations to demonstrate skills in developing deep learning models (40% of final grade) and their final collaborative project (60% of the final grade).

Extraordinary examination:

Extraordinary examination consists of an individual presentations to demonstrate skills in developing deep learning models (40% of final grade) and a final collaborative project (60% of the final grade).

8. Teaching resources

8.1. Teaching resources for the subject

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Tensorflow Intro</td>
<td>Web resource</td>
<td>https://www.tensorflow.org/get_started/</td>
</tr>
<tr>
<td>Deep learning with Python.</td>
<td>Bibliography</td>
<td>F Chollet. Manning Publications Co., 2017</td>
</tr>
<tr>
<td>MSTC GitHub</td>
<td>Web resource</td>
<td>https://github.com/MasterMSTC</td>
</tr>
<tr>
<td>Andrej Karpathy blog About Hacker's guide to Neural Networks</td>
<td>Web resource</td>
<td>https://karpathy.github.io/</td>
</tr>
</tbody>
</table>