TABLE OF CONTENTS

- GET TO KNOW CENTRALESUPÉLEC BETTER .. 4
- The PARIS-SACLAY CAMPUS .. 5
- The METZ CAMPUS ... 6
- The RENNES CAMPUS ... 7
- RESEARCH ... 8
- INTERNATIONAL Incoming MOBILITY ... 9
- CORPORATE RELATIONSHIPS ... 9
- French engineering system & .. 10
- European system .. 10
- CENTRALESUPÉLEC CURRICULUM ... 11
- THE SPECIFICITIES OF THE CENTRALESUPÉLEC ENGINEER .. 12
- MAJORS .. 13
- EDUCATIONAL ACTIVITIES ... 14
- MODERN LANGUAGES ... 16
- SPORTS ... 16
- Plagiarism & Academic Integrity .. 16
- Planned schedule .. 17
- 1st YEAR – 1st SEMESTER (S5) ... 18
- 1st year - 2nd Semester (S6) .. 20
- Students’ civic commitment ... 21
- Sciences courses for Engineers - 1st Year .. 22
- Engineering Challenge term 2 subjects (ST2) 1st Year ... 22
- Engineering Challenge term 4 subjects (ST4) 1st Year ... 23
- 2nd year - 1st Semester (S7) .. 24
- 2nd Year - 2nd Semester (S8) .. 26
- HSS ELECTIVES courses .. 27
- 2nd YEAR ELECTIVE Courses .. 28
- Engineering Challenge term 5 subjects (ST5) 2nd year ... 29
- Engineering Challenge term 7 subjects (ST5) 2nd year ... 29
- 3rd YEAR ... 30
- CUSTOMIZE YOUR degree track .. 32
- THE RESEARCH PROGRAM CS+R ... 33
- THE ENTREPRENEURSHIP PROGRAM CS+E ... 33
- THE Computer SCIENCE PROGRAM CS+IS .. 33
- Key theme: sustainable development .. 34
- Key theme: Industry of the future .. 35
Dear student engineers, welcome to CentraleSupélec!

We are pleased to welcome you to a school that offers you many opportunities to build a professional project that suits you.

Thanks to increasingly professional educational activities, thematic courses, a wide range of mobility opportunities and meetings with companies, engineers and experts who are partners of the School, you will have all the cards in hand to personalize your curriculum.

Our program will enable you to progressively develop your skills in the key qualities of an engineer. You will discover scientific fields, professions and sectors of activity in which you can engage to meet the major challenges that our society must face in the 21st century.

Our mission is to support you in finding your path and providing you with the tools to succeed. The success of your time at the School will depend on your commitment to building your talents.

Romain Soubeyran
CentraleSupélec Director General
Numerous teams and departments contribute to the functioning of CentraleSupélec and to the smooth running of the engineering curriculum. A complete digital environment contributes to the monitoring of courses and students’ course preferences.
THE PARIS-SACLAY CAMPUS

THE CAMPUS
The Paris-Saclay campus, with a surface area of 105,000 m², is at the heart of the Paris-Saclay cluster. It is composed of 3 buildings – the Eiffel Building, the Bouygues Building, and the Bréguet Building – housing teaching facilities (auditoriums, classrooms), research laboratories, collaborative workspaces, premises dedicated to student community life, sports facilities, university restaurant and cafeterias, as well as a FabLab and an incubator.

In the near surroundings of the campus, Césal provides more than 2,500 rooms spread over several types of accommodation for CentraleSupélec students.

THE PARIS-SACLAY ECOSYSTEM
CentraleSupélec is a founding member of the University of Paris-Saclay, which brings together Grandes Écoles (CentraleSupélec, AgroParisTech, ENSAE, ENS Paris-Saclay, IOGS), universities and research organizations.

It brings together 15% of French research, 48,000 students, and 4,600 doctoral students. This research-intensive University of international standing is ranked 16th in the Shanghai 2022 ranking (first University in continental Europe) and, for the third year in a row, first in mathematics and 9th in physics.

At the start of the 2023 academic year, the Lumen Learning Center was officially opened to the public offering spaces, services, and content for studying, innovating, and sharing knowledge. The cluster is also home to private research centers: EDF, Danone, Servier, Thales, etc. trialists and the general public around collections, exhibitions, conferences, debates and experiments to discuss the challenges facing the University.
THE METZ CAMPUS

Ideally located on the outskirts of the city center, access to all main points of interest in the city is just a few minutes away by public transportation from the Metz campus which embodies CentraleSupélec’s commitment to responsible development, both in terms of training and research, which are essential for all socio-economic players and public decision-makers.

In terms of research, the activities of teacher-researchers are carried out in internationally renowned laboratories and a research chair:

- LMOPS EA 4423
- LORIA UMR 7503
- GEORGIA TECH - UMI 2958
- The Chair in Photonics

Experimentation platforms are available to students, teacher-researchers and corporate partners:

- Mobile Robotics
- Connected apartment
- Holophony

EDUCATION

From the 1st year, Physics and Data Analysis problems are proposed to students, such as semi-autonomous navigation of drones, signal analysis and representation for source separation and data compression, etc.

Elective courses are also offered in the 2nd year on topics such as mobile applications, web services, C++ programming, Big Data, modern coding theory, audio data analysis, image processing, complex electronic embedded systems, light-matter interactions, intelligent photonic systems, chaos, fractals, and complexity.

TWO 3RD-YEAR CONCENTRATIONS:

Data and Information Science
This concentration, at the intersection of mathematics and computer science, trains data scientists who are both precise in the mathematical foundations of the most recent machine learning methods (statistical machine learning models, neural models, deep learning, etc.) and capable of efficiently implementing large-scale computer solutions involving these methods (optimized algorithms in C++, GPUs for deep learning, large-scale Big Data architecture, etc.).

Physics and Photonics applied to Information Processing
This concentration trains engineers in the paradigm shift that accompanies information processing and, more specifically, the problems associated with computing, storage and communication of information. The limitations of physics related to the miniaturization of electronic components and the limits of energy sources are leading society and engineers to design and develop innovative solutions for information processing.
THE RENNES CAMPUS

The Rennes campus offers a multidisciplinary training program, centered on the theme of Smart and Secure Life, starting in the second year of the CentraleSupélec curriculum, to understand digital sciences and techniques better. The courses and electives offered are based on the latest work of the four research teams on campus:

• Automation,
• Cybersecurity
• Electronics, Signal Processing and Telecommunications
• Emotional Analysis

THREE 3RD-YEAR CONCENTRATIONS:

Numérique et Vivant
This concentration aims to train eco-responsible, digitally-skilled engineers to meet today’s and tomorrow’s environmental and health challenges through prevention, patient or ecosystem monitoring and performance improvement.

Sustainable Energy Systems
This concentration provides mastery of concepts related to dynamic systems and the associated tools to prepare engineers for the energy transition (decarbonization of production, massive integration of renewable energies, sobriety of consumption, etc.).

Cybersecurity
This concentration brings the necessary keys to the success of the security of the information system, via training covering cryptology, prevention and detection of intrusions and malicious software, as well as various aspects of security engineering.

ENTREPRENEURSHIP
The Rennes campus has a dedicated space, “The Cave”, devoted to developing start-up projects by students, doctoral students and staff members. It is also a place for exchanges with our teacher-researchers, themselves start-up creators. Co-working space is available and will be progressively extended and completed by a virtual reality/augmented reality laboratory and a FabLab.
The Research Center welcomes engineering students who are particularly passionate about science through the “research track,” that allows them to conduct research activities in one of the Center’s laboratories throughout their studies. The 18 laboratories on our campuses are structured around the following disciplines:

- Applied Mathematics
- Applied Physics
- Electrical Engineering, Electronics
- IT and Information Systems
- Industrial Engineering, Economics and Management
- Materials and Processes
- Mechanics, Energy and Combustion
- Signal processing, Control

One of the strengths of the CentraleSupélec Research Center is its teams complementary skills, which makes it possible to address the complexity of systems to meet major societal challenges, in line with the objectives of the School’s educational project. To meet these challenges, the Research Department has chosen to engage in coordinated actions between the various laboratories on the following unifying themes:

- Aeronautics and Space
- Biotechnology
- Cybersecurity
- Data Science & Artificial Intelligence
- Energy, Transport & New Mobility
- Health & Life Science
- Industry of the Future
- Networks and Telecommunications
- Environment & sustainability

CentraleSupélec is involved in 5 of the ten research departments of the Université Paris-Saclay:

- Mechanics, Energetics and Processes (MEP);
- Physics of Waves and Matter (PHOM);
- Information and Communication Sciences and Technologies;
- Mathematics;
- Electrical, Optical and Electronic Engineering (EOE).

It also participates in several cross-disciplinary groups: energy, materials, HPC, etc., and is the leader of the Graduate School of Engineering and Systems Sciences.
INTERNATIONAL INCOMING MOBILITY

A TEAM DEDICATED TO INTERNATIONAL STUDENT MOBILITY

International Incoming Mobility

Marisol Verstraete
Double Degree
Office: Eiffel, LC.461-b
marisol.verstraete@centralesupelec.fr

Julie Castel
Academic Exchanges
Office: Eiffel, LC.461-b
julie.castel@centralesupelec.fr

Erasmus & Agreement

Céline Verhaeghe
Erasmus & Agreement Manager
Office: Eiffel LC 461-a
celine.verhaeghe@centralesupelec.fr

TOP 5 MOST REPRESENTED COUNTRIES:
• Morocco
• Tunisia
• Brazil
• Spain
• Lebanon

INTERNATIONAL KEY FIGURES:
• 200 academic partners
• 80 double degree agreements
• 26% of international students
• 2 key networks: T.I.M.E. & CESAER
• 3 international campuses, China, India, Morocco
• 1 European university dedicated to health

CORPORATE RELATIONSHIPS

The school has long developed very close relations with the business world by establishing partnerships allowing the companies to meet and contact students in the framework of different events and activities with the objective of discovering the different sectors and companies and engaging and discussing with alumni about in order to start thinking about their career path in term of internships and first job opportunities later on.

Many engineers are also involved in the curriculum, particularly in the context of the engineering challenge terms (the challenge weeks).

CentraleSupélec has nearly 150 partner companies in various sectors such as:

• Aeronautics
• Aerospace
• Insurance
• Automotive
• Audit
• Banking
• Construction
• Consulting
• Chemistry
• Communication
• Distribution
• Energy
• Industry
• Computer science
FRENCH ENGINEERING SYSTEM & EUROPEAN SYSTEM

<table>
<thead>
<tr>
<th>European Higher Education</th>
<th>CentraleSupélec Engineering Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Year</td>
<td>Preparatory classes</td>
</tr>
<tr>
<td></td>
<td>1st Year</td>
</tr>
<tr>
<td>2nd Year</td>
<td>Preparatory classes</td>
</tr>
<tr>
<td></td>
<td>2nd Year</td>
</tr>
<tr>
<td>3rd Year</td>
<td>CentraleSupélec</td>
</tr>
<tr>
<td></td>
<td>1st Year</td>
</tr>
<tr>
<td>4th Year</td>
<td>CentraleSupélec</td>
</tr>
<tr>
<td></td>
<td>2nd Year</td>
</tr>
<tr>
<td>5th Year</td>
<td>CentraleSupélec</td>
</tr>
<tr>
<td></td>
<td>3rd Year</td>
</tr>
</tbody>
</table>

- BSc.
- MSc.
CENTRALESUPÉLEC CURRICULUM

BRINGING TOGETHER 2 MAJOR OBJECTIVES:

- A deep dive into science, technology and academia
- A wide scope on the real world practice of the engineering profession

- Fundamental sciences
- Engineering sciences
- Humanities and social sciences

Integrated over the 3 years of the curriculum

Projects
- Professional skills (hard-skills & soft-skills)
- Professional focus options
- Internships
- Languages
- Digital

CentraleSupélec's engineering program is designed to last three years. It's a generalist program, meaning that all CentraleSupélec students must acquire the skills and knowledge offered in the curriculum.

The curriculum, in its organization and progression, contributes to the definition of the student's professional project, and therefore includes a significant number of thematic courses intended in particular to prepare students for their career choices in the third year: concentrations and professional focus options.

A CURRICULUM WHERE STUDENTS PLAY AN ACTIVE ROLE IN CHOOSING THEIR PATH

<table>
<thead>
<tr>
<th>Common educational activities</th>
<th>Elective educational activities *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core curriculum courses</td>
<td>Engineering Science courses</td>
</tr>
<tr>
<td>Workshops (practices and professional projects)</td>
<td>Engineering Challenge Term</td>
</tr>
<tr>
<td>Coding Weeks</td>
<td>Projects</td>
</tr>
<tr>
<td>Start-Up Week</td>
<td>Concentrations of 3rd year in the perimeter of the majors</td>
</tr>
<tr>
<td>Business Game</td>
<td>Professional focus options (3A)</td>
</tr>
<tr>
<td></td>
<td>Internships</td>
</tr>
</tbody>
</table>

40% 60%

AN ENGINEERING CURRICULUM IN TRANSITION

In 2023, CentraleSupélec was awarded the DD&RS label for four years to recognize the relevance and impact of the actions deployed in its strategic approach to ecological and social transition. This reward is reflected in new courses in the curriculum.

CORE CURRICULUM COURSES - 50 hours dedicated for all students to the ecological and social transition within the following courses:
- Workshops on decarbonation & energy transition
- IPBES Biodiversity course
- Systems engineering course
- Business management course
- Corporate Finance course

7 ELECTIVE COURSES, 6 ENGINEERING CHALLENGE TERMS & 8 PROJECT POLES
+ SPECIFIC ACTIONS IN 3rd YEAR
+ DOUBLE DEGREE COURSES:
THE SPECIFICITIES OF THE CENTRALESUPÉLEC ENGINEER

The CentraleSupélec engineering curriculum offers its students many opportunities to personalize their course and build their professional project. 9 key competencies should be acquired at the end of the students’ journey, they have been identified as essential for all engineering jobs, whether it is in an industrial company, in services, in finance, in consulting, in research or in starting a company or a start-up, etc.

1. Analyze, design and implement complex systems with scientific, technological, social and economic dimensions

2. Develop broad skills in a scientific or academic field and applied professional areas

3. Act, engage, innovate within a scientific and technological environment

4. Create value for companies and clients

5. Operate and evolve in a diverse, international, inter-cultural environment

6. Function effectively as an accountable and innovative actor in the digital world

7. Persuade

8. Lead a project or team

9. Think and act as an honest, ethical, accountable engineer, taking into account environmental, social and societal dimensions

Illustrations: Astrid Cornet
MAJORS

The curriculum is partially organized around 8 majors, representing each a promising scientific or professional sectors:

- In the 3rd year, each of these majors is organized into several concentrations falling under one of the specialization areas offered to students
- In the 1st and 2nd years, the majors are covered by the Engineering Challenge Terms

To guarantee the generalist aspect of the curriculum, the courses in the 1st and 2nd year are very diverse. The majors only define the Engineering Challenge Term and the Challenge Weeks.

You are exposed to complex problems in a specific engineering field from the semester 5. In the following semesters, you'll explore other majors in the framework of the Engineering Challenge Weeks.

THE 8 MAJORS (AREA SPECIALIZATIONS) & THEIR CONCENTRATIONS

<table>
<thead>
<tr>
<th>Civil Engineering and Transportation</th>
<th>Energy</th>
<th>Large-Scale Interactive Systems</th>
<th>Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil and Urban Engineering</td>
<td>Energy Resources</td>
<td>Control Engineering</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Aerospace and Transport Systems</td>
<td>Power and Energy Grids</td>
<td>Design and System Sciences</td>
<td>Software Intelligence</td>
</tr>
<tr>
<td></td>
<td>Energy efficiency</td>
<td>Supply Chain and Operations Management</td>
<td>Design of Computing Platforms</td>
</tr>
<tr>
<td></td>
<td>Sustainable Energy Systems</td>
<td>Large complex, hybrid, large-scale, cooperative or automated systems, including enterprise systems (and processes) and the digital transformation of enterprise systems.</td>
<td>Cybersecurity</td>
</tr>
<tr>
<td></td>
<td>Reporting to the challenges of the energy and climate transition: These energy sources?</td>
<td>Target skills:</td>
<td>Design and develop computer systems along 7 axes:</td>
</tr>
<tr>
<td></td>
<td>How to produce, convert, store, transport and use energy?</td>
<td>- Engineering of complex systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scarcity of resources, cost and non-degradation of the environment, technical and economic regulation, other human factors (acceptability, legality).</td>
<td>- Design/driving of automated and cooperative systems for industry and services, including advanced control laws.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop specialized skills in terms of energy source or production/conversion/distribution process (energy networks in particular).</td>
<td>- Planning, optimization and performance management</td>
<td></td>
</tr>
<tr>
<td>Mathematics and Data Science</td>
<td>Physical and Nanotechnology</td>
<td>Communicating Systems and Internet of Things</td>
<td>Living - Health/Environment</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Photonics and nano-systems Engineering</td>
<td>Information and Communication Engineering</td>
<td>Environment and sustainable production</td>
</tr>
<tr>
<td>Mathematics, Modeling, Financial Engineering</td>
<td>Quantum Engineering</td>
<td>Digital and Living</td>
<td>Healthcare and biomedical services</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Take up industrial or scientific challenges, which either exploit the fundamental principles of physics or discover and understand new ones.</td>
<td>Electronic Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This major will enable engineers to design and develop new solutions for information processing, energy storage and exploitation, sensors and smart networks, medical diagnosis and therapies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axes:</td>
<td>Multi-scale problems, intrinsically multidisciplinary with technological (electronics, electromagnetics, compatibility, etc.), economic, regulatory and societal components.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials, nanomaterials, advanced materials (especially for electronics, optics and biomedical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information and energy processing (including photonics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics and Data Science</td>
<td>Information and Communication Engineering</td>
<td>Digital and Living</td>
<td>Living - Health/Environment</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Information and Communication Engineering</td>
<td>Digital and Living</td>
<td>Environment and sustainable production</td>
</tr>
<tr>
<td>Mathematics, Modeling, Financial Engineering</td>
<td>Quantum Engineering</td>
<td>Electronic Engineering</td>
<td>Healthcare and biomedical services</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Take up industrial or scientific challenges, which either exploit the fundamental principles of physics or discover and understand new ones.</td>
<td>Design heterogeneous, flexible, cooperative, high-tech and distributed intelligence processing and communication systems (telecommunication infrastructure networks, networks of connected objects, dispersed and mobile systems, confined systems...).</td>
<td></td>
</tr>
<tr>
<td>Mathematics and Data Science</td>
<td>This major will enable engineers to design and develop new solutions for information processing, energy storage and exploitation, sensors and smart networks, medical diagnosis and therapies.</td>
<td>Multi-scale problems, intrinsically multidisciplinary with technological (electronics, electromagnetics, compatibility, etc.), economic, regulatory and societal components.</td>
<td></td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Axes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics, Modeling, Financial Engineering</td>
<td>Quantum Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Materials, nanomaterials, advanced materials (especially for electronics, optics and biomedical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information and energy processing (including photonics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics and Data Science</td>
<td>Information and Communication Engineering</td>
<td>Digital and Living</td>
<td>Living - Health/Environment</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Information and Communication Engineering</td>
<td>Digital and Living</td>
<td>Environment and sustainable production</td>
</tr>
<tr>
<td>Mathematics, Modeling, Financial Engineering</td>
<td>Quantum Engineering</td>
<td>Electronic Engineering</td>
<td>Healthcare and biomedical services</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Take up industrial or scientific challenges, which either exploit the fundamental principles of physics or discover and understand new ones.</td>
<td>Design heterogeneous, flexible, cooperative, high-tech and distributed intelligence processing and communication systems (telecommunication infrastructure networks, networks of connected objects, dispersed and mobile systems, confined systems...).</td>
<td></td>
</tr>
<tr>
<td>Mathematics and Data Science</td>
<td>This major will enable engineers to design and develop new solutions for information processing, energy storage and exploitation, sensors and smart networks, medical diagnosis and therapies.</td>
<td>Multi-scale problems, intrinsically multidisciplinary with technological (electronics, electromagnetics, compatibility, etc.), economic, regulatory and societal components.</td>
<td></td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td>Axes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics and Data Science</td>
<td>Materials, nanomaterials, advanced materials (especially for electronics, optics and biomedical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information and energy processing (including photonics)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The engineering sciences join the life sciences.
- Health Engineering: to train engineers who will be able to meet all the challenges of the transformation of health; and in particular: Data for health: epidemiology, predictive/individual medicine, medical imaging.
- BioTech: Environment and sustainable production as an anchor and process development for the agri-food industry.
EDUCATIONAL ACTIVITIES

The semesters are organized in:

#1 - ACADEMIC TERMS (SG): a set of educational activities that are often elective courses, over a period of 6 to 8 weeks. They allow students to acquire the necessary prerequisites to enter an Engineering Challenge Term by offering a choice of elective courses allowing students to deepen their knowledge in or explore new subjects.

#2 - ENGINEERING CHALLENGE TERMS (ST): a set of courses in the framework of an engineering problem. They aim at:

- Addressing the chosen problem with a holistic approach using the appropriate knowledge and skills
- Highlighting the links between the courses
- Progressing in the construction of one’s career path

THE THEMES are:

- ST2 = Modeling
- ST4 = Information
- ST5 = Functional modeling and Regulation
- ST7 = Optimization

THE TYPICAL STRUCTURE OF A ST:

<table>
<thead>
<tr>
<th>CONTEXT & ISSUES MODULES</th>
<th>CORE CURRICULUM COURSE</th>
<th>SPECIFIC COURSE</th>
<th>CHALLENGE WEEK</th>
</tr>
</thead>
</table>

- The Context & Issues Modules allow students to become familiar with the engineering issues addressed in the ST through introductory lectures, round-tables, and an introduction to the cases economic, social and geopolitical contexts.
- The core curriculum courses are the same for all students, regardless of the ST subject chosen.
- The Specific Course is proposed in the major in order to clarify the theme developed in the sequence and give the students the necessary tools to carry out the challenge week.
- The Challenge Week (EI) responds to an engineering problem of interest to a client/partner participating in this course. It is multidisciplinary and it takes into account the human and economic dimensions. The EI presents the characteristics of a complex system: multi-scale, multi-agent, emergent properties.

Several Challenge Weeks are offered within the same Engineering Challenge Term.

SANDWICH WEEKS

In the 1st and 2nd years, these blocks of one to two weeks offer to students short and intense professionalizing group activities, linked to the construction of their training project or their professional project.

The sandwich weeks are linked to the development of specific skills: problem solving, entrepreneurship, project management, computer programming, etc.

In 1st Year:
- Introductory period
- Coding Weeks (80 WLH, end of SG1)
- Start-Up Week (30 WLH, end of ST4)

In 2nd Year:
- Business Game / Climate Science course (before ST5)
- HSS Electives, Experimental Electives (SG6, SG8)

In 3rd Year:
- Professional focus options periods
WORKSHOPS

THE ENGINEER PRACTICE WORKSHOPS (API) have been designed to help students move from an academic to a professional frame of reference and to develop these critical skills for engineers:

- Understanding major societal issues
- Posing a problem
- Teamwork
- Creativity
- Managing complex projects
- Communication, knowing how to convince
- Working in an intercultural context
- Developing leadership skills
- Thinking and acting ethically

The APIs are linked to the projects in Semesters 6 to 8.

THE PROFESSIONAL PROJECT WORKSHOPS (APP) are designed to help students build their professional projects and adapt their academic path for that. They also aim to prepare them for their entry to the professional world (interviews with engineers, discovering companies and professions, networking, CVs, etc.).

Regular one-to-one meetings with a dedicated coordinator enable each student to receive support during their first two school years, mainly to discuss their professional questions.

PROJECTS IN 1ST, 2ND AND 3RD YEAR

The projects are designed to work on 2 main objectives:

1. Discovering the functioning of a team and acquiring experience in conducting a professionally-oriented project.
2. Setting up a work organization to achieve a large-scale project (publication, competition/challenge, software, demonstrator, innovative solution, etc.) whose value will be identified by all stakeholders.

These projects are grouped into Project Poles, whose managers coordinate the subjects, supervision, possible contributions and evaluation. CentraleSupélec has 24 Project Poles covering all of the school’s themes. They propose projects to 1st and 2nd-year students, and some of them can provide resources for projects carried out by students. The majority of these projects are sponsored by an external partner acting as client for the project.

PROJECT POLES

<table>
<thead>
<tr>
<th>Student Union Projects</th>
<th>MediaScience (Design for scientific and technical outreach)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Faber Lab (Sustainable construction and territories)</td>
<td>Mathematical modeling of complex systems</td>
</tr>
<tr>
<td>Cubesats (nano-satellites)</td>
<td>Agile and Responsible Economic Mutations</td>
</tr>
<tr>
<td>Data Science</td>
<td>New Energy Concepts</td>
</tr>
<tr>
<td>Research Training</td>
<td>Production, Supply Chain & Opérations</td>
</tr>
<tr>
<td>Student Union Digital Projects</td>
<td>Robotics</td>
</tr>
<tr>
<td>Engineering for the Environment</td>
<td>Biotechnology and Health</td>
</tr>
<tr>
<td>Educational Innovation and EdTech</td>
<td>Smart & Secure Life</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>Control & Optimization</td>
</tr>
<tr>
<td>IoT (Internet Of Things)</td>
<td>Tech For Good & Design Thinking</td>
</tr>
<tr>
<td>Makers (Design and prototyping)</td>
<td>Ecological and Social Transition</td>
</tr>
<tr>
<td>Energy Systems Management</td>
<td>Smart Vehicles</td>
</tr>
</tbody>
</table>
MODERN LANGUAGES

Graduation Objectives:
• Master three modern languages, including French and English

MODERN LANGUAGES TAUGHT AT CENTRALESUPELEC

• Arabic
• Chinese
• English
• FLE (French as a Foreign Language)
• German
• Hebrew
• Italian
• Japanese
• Portuguese
• Russian
• Spanish
• Swedish

ZOOM ON FRENCH AS A FOREIGN LANGUAGE (FLE)

CentraleSupélec offers French language courses for non-natives with different entry-levels. The courses are mandatory for Double Degree students, they are expected to have a B2 level in French by the end of their journey at CentraleSupélec.

SPORTS

SPORTS OFFER

• Athletics
• Rowing
• Badminton
• Basketball
• Boxing,
• Cheer-leading,
• Modern dance
• Climbing
• Fencing
• Soccer
• Handball
• Field Hockey
• Judo / Jiu-jitsu
• Cross training
• Swimming
• Rugby
• Squash
• Tennis
• Table tennis
• Volleyball

The practice of sports is mandatory at CentraleSupélec. You choose a non-competitive sports activity (EPS), or a competitive sports activity (AS) supervised by a CentraleSupélec teacher, in partnership with the French Federation of University Sports (FFSU).

PLAGIARISM & ACADEMIC INTEGRITY

Your teachers can use Compilatio plagiarism detection software to check the academic integrity of their students’ work. They have access to an internal database of CentraleSupélec’s student work (homework, internship reports, feedback notes, etc.) and numerous external sources. Compilatio will soon be equipped with a feature for detecting text produced by generative AIs such as ChatGPT: https://www.compilatio.net/ia-detecteur-info

Don’t hesitate to use it to:
• Identify what plagiarism is
Plagiarism is the act of presenting someone else’s work as your own. And you can also commit plagiarism in the following cases: graphic illustrations, translation, paraphrasing, self-citation, anonymous sources, and primary and secondary sources.
• Understand how to avoid plagiarism
Compilatio Studium lets you quickly identify the sources used to construct your assignments. You can then check for plagiarism in your production to see if you’ve credited all your borrowings with proper referencing and citation practices

Find out more: https://www.compilatio.net/studium
1ST YEAR – 1ST SEMESTER (S5)

The first year of the CentraleSupélec engineering curriculum will address two major themes, Modeling and Information, via a dedicated course offering in the two Engineering Challenge Terms, ST2 and ST4.

It will also allow you to reflect on the construction of your academic project (positioning in thematic courses, choice of international mobility, etc.) and your professional project (workshops, first projects, etc.).

<table>
<thead>
<tr>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 1</td>
<td>APP 1</td>
<td>APP 2</td>
<td>API 2</td>
<td>Projects</td>
<td></td>
</tr>
</tbody>
</table>

Languages / Sports

- ACADEMIC TERM 1
- Science Courses for Engineers 1.1
- Science Courses for Engineers 1.2
- Convergence, Integration, Probabilities - CIP
- Information Systems and Programming - SIP

WELCOME WEEKS

- Engineering Challenge Term 2 Modeling:
 - Context and issues modules
 - Algorithmic and Complexity
 - Specific Course related to the topic of the Engineering Challenge Term
 - Challenge Week

Professionalization:

- Engineer practice workshops
- Professional project workshops
- Business management

Languages:

- Language and culture courses

S5 WORKSHOPS

APP 1 - INTRODUCTION TO ENGINEERING SKILLS

- International students

APP 2 - FIRST STEPS IN BUILDING A PROFESSIONAL PROJECT

- International students

API 1 - A TEAM ENGINEERING CHALLENGE

- Project management - Group dynamics

API 2 - CLIMATE DAY

- Understanding the phenomena of climate change with the Climate Fresco and a carbon footprint

THE CODING WEEKS

(2 x 4 days) programming mini-bootcamp that offers a hands-on learning of the developer’s methodologies and tools.

Program:

- Week 1: work in pairs on a typical project, very guided, to increase skills
- Week 2: work in groups of 4 or 5 on a free project on a given theme, coached and assisted by 3rd year students
- Software Craftsmanship – MVP - Agility - Tests – User feedback
- Git, Stackoverflow, group messaging…
- Competitive programming, challenges...
- Projects on the 3 campuses

Goal: from the idea to the Minimal Viable Product (MVP)
START-UP WEEK

Accompanied by coaches, you will be asked to present your business creation ideas in a very advanced form, whether it be in the search for feasibility or the continuation of the elements seen in the course of business management, divided into teams you will have four days to convince of the value of a project and be an actor of it.

1ST YEAR - 2ND SEMESTER (S6)

Languages / Sports

ACADEMIC TERM

Science Courses for Engineers 1.3
Science Courses for Engineers 1.4
Quantum & Statistical Physics
Partial Differential Equations - EDP
Business Finance
Climate Sciences

api 3 & 4 S6 Projects
api 5
api 6
api 7

Languages:
Language and culture courses

Functional Sciences & Engineering Sciences:
Science Courses for Engineers
Quantum & Statistical Physics
Partial Differential Equations
Climate Sciences

Teaching methods:
Teamwork
Appropriation of the pitch technique
142 teams of 6 students = 22 groups
2 to 3 coaches per group
Based on the theme chosen beforehand in various sectors: Tech for Good, health/biotech, transport/mobility, environment/climate, sport... and in the continuity of the elements seen in the course of business management, divided into teams you will have four days to convince of the value of a project and be an actor of it.

Work placement:

Students must complete a minimum of 5 weeks of continuous internship in a company between the first and second years. The work placement provides the opportunity to develop the knowledge necessary for a thorough understanding of the operator’s job and its crucial role as the foundation of any product or service production process. To be validated, this work placement must, in addition to the conditions on the mission’s nature, place the student in a context conducive to acquiring the required knowledge. In particular, this demands the presence of a local hierarchy and a sufficient number of operators performing the same task.

Pedagogical objectives:
1 - Acquisition of knowledge
- Of the company, view of the executive function;
- Of the production function: manufacturing, logistics, handling, maintenance - learning about human relations in a professional environment
- Experience of an executive position;
- Of the production function: manufacturing, logistics, handling, maintenance - learning about human relations in a professional environment
- Experience of an executive position;
- Experience of an executive position.

- Production of an internship report;
- Highlighting achievements in writing and orally
- Presentation and work placement report

Students will be able to get involved:
- In CentraleSupélec’s internal student associations, according to a list approved by the school;
- In an external association selected from the ARUP (Associations Reconnues d’Utilité Publique) list;

Work placement:

ENGINEERING MEETINGS

Students will be able to get involved:
- In CentraleSupélec’s internal student associations, according to a list approved by the school;
- In an external association selected from the ARUP (Associations Reconnues d’Utilité Publique) list;

WORK PLACEMENT

Students will be able to get involved:
- In CentraleSupélec’s internal student associations, according to a list approved by the school;
- In an external association selected from the ARUP (Associations Reconnues d’Utilité Publique) list;

This civic commitment, lasting at least 20 hours, must occur outside the engineering curriculum.

S6 WORKSHOPS

API 3 - POSING THE PROBLEM
- Know how to pose a problem, establish robust hypotheses, determine and use relevant orders of magnitude, and manage uncertainty and risk.

API 4 - PROJECT MANAGEMENT
- Project review, risk analysis.

API 5 - CREATIVITY
- Group creativity methods (brainstorming, inversion, bi-association, analogy...)

API 6 - CREATING VALUE & TEAM DYNAMICS
- Project review, risk analysis.

API 7 - COMMUNICATION & HOW TO CONVINCE
- Know how to structure a convincing presentation, public speaking, and increasing impact in oral communication.

APP 3 - UPDATE ON THE PROFESSIONAL PROJECT AND ENGINEERING MEETINGS

S6 WORKSHOPS

API 3 - POSING THE PROBLEM
- Know how to pose a problem, establish robust hypotheses, determine and use relevant orders of magnitude, and manage uncertainty and risk.

API 4 - PROJECT MANAGEMENT
- Project review, risk analysis.

API 5 - CREATIVITY
- Group creativity methods (brainstorming, inversion, bi-association, analogy...)

API 6 - CREATING VALUE & TEAM DYNAMICS
- Project review, risk analysis.

API 7 - COMMUNICATION & HOW TO CONVINCE
- Know how to structure a convincing presentation, public speaking, and increasing impact in oral communication.

APP 3 - UPDATE ON THE PROFESSIONAL PROJECT AND ENGINEERING MEETINGS

STUDENTS’ CIVIC COMMITMENT

From the start of the 2023 academic year, during the first two years of their studies, all students must carry out a solidarity, volunteer or civic activity related to diversity, inclusion, gender equality, disability, humanitarianism, etc.

This civic commitment, lasting at least 20 hours, must occur outside the engineering curriculum.

S6 WORKSHOPS

API 3 - POSING THE PROBLEM
- Know how to pose a problem, establish robust hypotheses, determine and use relevant orders of magnitude, and manage uncertainty and risk.

API 4 - PROJECT MANAGEMENT
- Project review, risk analysis.

API 5 - CREATIVITY
- Group creativity methods (brainstorming, inversion, bi-association, analogy...)

API 6 - CREATING VALUE & TEAM DYNAMICS
- Project review, risk analysis.

API 7 - COMMUNICATION & HOW TO CONVINCE
- Know how to structure a convincing presentation, public speaking, and increasing impact in oral communication.

APP 3 - UPDATE ON THE PROFESSIONAL PROJECT AND ENGINEERING MEETINGS
SCIENCES COURSES FOR ENGINEERS - 1ST YEAR

ENGINEERING CHALLENGE TERM 2 SUBJECTS (ST2) 1ST YEAR
- Medical Robotics
- Telecommunication Systems
- Modeling of Strategic Interactions Through Games
- Energy Transition
- Modeling, Simulations and Experiments for the Design of Vehicles and Structures
- Earth Observation for our Environment and Safety
- Viral Propagation
- Bioengineering: Produce, Protect, Repair

ENGINEERING CHALLENGE TERM 4 SUBJECTS (ST4) 1ST YEAR
- Systems Monitoring and Prognostics for Risk Management
- Big Data & Health: from Data Acquisition to Decision Making
- The IoT (Internet of Things) and Related Information Processing
- Data and Statistics in Finance
- Adapting infrastructures to climate change
- Energy and Climate
- Black swans detection in particle physics & cosmology
- Data@Web: Web Data Intelligence "Value Creation around of Web Data"

\(\text{EN}\) All the lectures of the Engineering Challenge Term are in English
THE INTENSIVE WEEK organized at the end of November, offers three teaching types: Five courses linked to SG6 electives:

- Understand the blockchain
- Communicate on sustainable research projects
- Design your way
- Ethics & responsibility
- Artificial intelligence in global health (Paris-Saclay, Metz, Rennes)

Seven experimental courses:

- Semiconductor Innovation
- Bridge Building Challenge
- Physics Experimental Work
- Audio Signal Processing
- Discovery of Software Defined Radio
- Immersion Week in Biomaterials
- Physics of electrical discharges (cold plasma)

About fifteen courses in the humanities and social sciences divided into four main areas:

- Individuals - work - organizations
- Societal issues
- Science, technology, society
- Innovation, arts and creativity

S7 WORKSHOPS

- API 4 - RESUME, COVER LETTER, PITCH
- API 8 - LEADERSHIP
 Leadership and self-awareness.
- API 9 - ENERGY TRANSITION - 2 TONS WORKSHOP
- API 10 - INTERCULTURALITY
 Open up to others, know how to adapt to a diverse environment.
- API 11 - ETHICS
 Acting ethically, understanding the consequences of one’s choices.

THE INTENSIVE WEEK

Sciences:
- Science Courses for Engineers 2.1
- Science Courses for Engineers 2.2
- Science Courses for Engineers 2.3
- Economics
- Sociology of Organizations

Engineering Challenge Term 5
Functional Modeling & Regulation:
- Context and issues modules
- Control of Dynamic Systems
- Climate Sciences
- Specific course
- Challenge week

Professionalization:
- Business games
- Law
- Engineer Practice workshops
- Professional Project workshops
- S7 Project

Languages:
- Language and culture courses

S7 TU

SEMESTER 7 CORE CURRICULUM & SEMESTER-LONG COURSES:

ENGINEERING SCIENCES
- Control of Dynamic Systems
- Climate Sciences

BUSINESS SCIENCES
- Economics
- Law

HUMANITIES AND SOCIAL SCIENCES
- Sociology of Organizations

SENIOR PROJECTS

- Business games
- Law
- Engineer Practice workshops
- Professional Project workshops
- S7 Project

Languages:
- Language and culture courses

THE INTENSIVE WEEK

at the end of November, offers three teaching types: Five courses linked to SG6 electives:

- Understand the blockchain
- Communicate on sustainable research projects
- Ethics & responsibility
- Artificial intelligence in global health (Paris-Saclay, Metz, Rennes)

Seven experimental courses:

- Semiconductor Innovation
- Bridge Building Challenge
- Physics Experimental Work
- Audio Signal Processing
- Discovery of Software Defined Radio
- Immersion Week in Biomaterials
- Physics of electrical discharges (cold plasma)

About fifteen courses in the humanities and social sciences divided into four main areas:

- Individuals - work - organizations
- Societal issues
- Science, technology, society
- Innovation, arts and creativity

THE INTENSIVE WEEK
2ND YEAR - 2ND SEMESTER (S8)

S8 TU

- Science Courses for Engineers 2.4
- Science Courses for Engineers 2.5
- Philosophy
- HSS

Engineering Challenge Term 7 Optimization:
- Context and issues modules
- Optimization
- Specific course
- ST7 project

Professionalization:
- S8 project
- Engineer practice workshops
- Professional Project Workshops

Languages:
- Language and culture courses

S8 WORKSHOPS

API 12 - PROJECT COACHING

API 13 - PROJECT COACHING & TEAM DYNAMICS

API 14 - COMMUNICATION & HOW TO CONVINCE

THE INTENSIVE WEEK organized at the beginning of June, offers three teaching types:

Five courses linked to S8 electives:
- Web and mobile application development
- Engineering, Ethics and Responsibility
- Purchasing management
- Risk Analysis (Rennes)
- Public Finance (Metz)

Seven experimental courses:
- Semiconductor Innovation
- Bridge Building Challenge
- Physics Experimental Work
- Audio Signal Processing
- Discovery of Software Defined Radio
- Bio mechanics & bio materials
- Contactless 3D scanning

Courses in the humanities and social sciences divided into four main areas:
- Individuals - work - organizations
- Societal issues
- Science, technology, society
- Innovation, arts and creativity

HSS ELECTIVES COURSES

These electives have been designed to help students understand better and contextualize the technical, managerial, and organizational problems with which engineers are confronted in the workplace, their direct links with the dynamics of society, as well as the normative frameworks, worldviews, and economic, ethical, and societal stances of the various actors involved (employees, citizens, scientists, and institutions).

Four main areas:

Expertise acquired:
- Reflexive ability is the ability to apprehend problems both in their specificity and insertion in an environmental and societal context.
- Integrate into one's work the controversies that develop around scientific and technical advances and innovations, the growing role of the users of these innovations in these controversies, and/or the very strong influence of economic, social, political and cultural contexts on the development of these innovations.
- Critical thinking - Development of analytical, argumentation and synthesis skills

Main concepts covered:
- Power, democracy, responsibility
2ND YEAR ELECTIVE COURSES

PARIS-SACLAY

• Advanced Mechanics for Civil Engineering: “Building tomorrow”
• Advanced Probabilities
• Advanced Statistics
• Algebra and Cryptology
• Applications of statistical & quantum physics to information science
• Architecture and design of digital systems
• Artificial Intelligence
• Artificial Intelligence and Global Health
• Audio Signal Processing
• Biomechanics & biomaterials
• Bridge Building Challenge
• Building the city - town planning, architecture and engineering
• Chemical Engineering: application to environment and sustainable production
• Cloud computing & distributed computing
• Communicating Sustainable Research Projects
• Communications Theory
• Contactless 3D scanning
• Corporate finance and Law
• Design your way
• Digital image processing
• Discovery of Software Defined Radio
• Distributions and Operators
• Dynamical Multi-Agent Systems. Application to drones formation control
• Dynamical Systems in Neuroscience
• Economics of decarbonized transport systems
• Economics of Growth and Innovation
• Electrical Energy Conversion for Renewable Energy Sources & Electromobility
• Electronics for biomedical and communication applications
• Embedded space systems
• Energy Conversion
• Environmental economics, energy and sustainable development
• Ethics and responsibility
• Experimental Physics Work
• Exposure of people to electromagnetism and electromagnetic compatibility
• Fluid Mechanics
• Fundamental laws of the Universe - Particle physics, astroparticles & cosmology
• Genomics & synthetic biology in health and industrial biotechnology
• Heat Transfer
• High Performance Computing
• Immersion week in biomaterials
• Integrated MEMS sensors
• Interactive Robotic Systems
• Machine Learning
• Maintenance and Industry 4.0
• Mobile Communication Networks and Services
• Models and Systems for Big Data management
• Navigation & optronics systems for autonomous vehicles & satellites - Real-time technologies
• Nonlinear behavior of materials
• Nuclear Engineering
• Object oriented software Engineering
• Operations and supply chain management
• Organizational and market theories
• Physics of Divided Matter
• Physics of electrical discharges (cold plasma)
• Procurement management
• Public sector professions
• Quantum and Statistical Physics
• Reactive Media
• Renewable Energies
• Scientific Calculation
• Semiconductor Innovation
• Signal compression and denoising
• Simulation of multiphysic couplings with FEM
• Strategy, Marketing and Organization
• Structural Analysis
• Structural Dynamics & Acoustics
• Sustainable innovation
• Theoretical Computing
• Understanding blockchain
• Understanding, optimization & simulation of biotechnological processes
• Web and mobile application development

RENNES

• Advanced computer networks
• Advanced Corporate Finance
• Artificial Intelligence and Deep Learning
• Artificial Intelligence and Global Health
• Bayesian methods for machine learning
• Communication Systems Engineering
• Computer Architecture
• Digital marketing
• Embedded systems and Internet of Things
• Geopolitics of resources and objects
• Intelligent Wireless Access & Experimentation
• Micro-networks: components & control
• Model based design of critical embedded control systems
• Model-based Predictive Control
• Modelica and bond graph: multi-domain modeling, analysis and simulation
• Operating Systems
• Production and Flow Management
• Risk Analysis (InfoSec Program)
• Serious Game
• System programming under Linux and Windows
METZ
- Analysis and processing of audio data (speech and music)
- Artificial Intelligence and Global Health
- Big Data: data gathering, storage and analysis on clusters and Clouds
- Chaos, Fractals and Complexity
- Chemical Engineering: application to environment and sustainable production
- Design of complex electronic systems: from component to heterogeneous system
- Estimation Methods and Introduction to the Modern Coding Theory
- Image processing

ENGINEERING CHALLENGE TERM 5 SUBJECTS (ST5) 2ND YEAR
- Piloting and Flight Control in Aeronautics and Space Transportation
- Control of (Bio)Processes for Sustainable Production
- Autonomous and Connected Vehicle
- The Eco-Neighborhood, a Complex System. Sustainable Development & Complex Project Management
- Light and Matter: Development of High Technology Instruments
- Multi-Energy Systems
- Control of Acoustic and Electromagnetic Pollution
- Complex Industrial and Critical Systems with Dominant Software
- Assistance and Autonomy of the Person
- Semi-Autonomous Navigation of Drones
- Smart photonics systems for control and measure
- Energy Intelligence and smart building
- Smart and Embedded Systems for Health
- Modeling and Development of Supervision Software

ENGINEERING CHALLENGE TERM 7 SUBJECTS (ST5) 2ND YEAR
- Stochastic Finance and Risk Modeling
- Optimization of Network Infrastructure for Smart Cities
- Circular Economy and Industrial Systems
- Optimization of Passenger Transport Systems
- Optimization and Management of Flows of Complex System
- High Performance Simulation for Footprint Reduction
- Efficiency of On-Board Energy Systems
- Additive Manufacturing Design
- Source Separation for Optimal Signal Processing
- Physical Neuro-Inspiratory Systems for Information Processing
- Energy Transition in Isolated Sites
- Digital Technology at the Service of the Human Factor

All the lectures of the Engineering Challenge Term are in English
The third year takes place on the Paris-Saclay, Rennes or Metz campuses. It is organized around:
- Majors that segment the sectors in which graduates are called upon to practice upon graduation. Each major is itself sub-segmented into Concentrations.
- Professional Focus Options that segment the professional sectors in which graduates are expected to practice upon graduation.

THE 8 MAJORS (AREA SPECIALIZATIONS) & THEIR CONCENTRATIONS

<table>
<thead>
<tr>
<th>Civil Engineering and Transportation</th>
<th>Energy</th>
<th>Large-Scale Interactive Systems</th>
<th>Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil and Urban Engineering systems</td>
<td>Energy Resources</td>
<td>Control Engineering</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Aerospace and Transport systems</td>
<td>Power and Energy Grids</td>
<td>Design and System Sciences</td>
<td>Software Science</td>
</tr>
<tr>
<td></td>
<td>Energy Efficiency</td>
<td>Supply Chain and Operations Management</td>
<td>Design of Computing Platforms</td>
</tr>
<tr>
<td></td>
<td>Sustainable Energy Systems</td>
<td></td>
<td>Cybersecurity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics and Data Science</th>
<th>Physics and Nanotechnology</th>
<th>Communicating Systems and Internet of Things</th>
<th>Living - Health/Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information and Data Sciences</td>
<td>Photonics and nanosystems engineering</td>
<td>Information and Communication Engineering</td>
<td>Environment and sustainable production</td>
</tr>
<tr>
<td>Mathematics, Modeling, Financial Engineering</td>
<td>Quantum Engineering</td>
<td>Digital and Living</td>
<td>Healthcare and Biomedical Services</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td></td>
<td>Electronic Engineering</td>
<td></td>
</tr>
</tbody>
</table>

THE PROFESSIONAL FOCUS OPTIONS

The Professional Focus Options of the 3rd year correspond to 8 large families of promising professions in which the young graduates will be able to occupy their first position:
- Research
- Innovation and Intrapreneurship
- Design of Complex Systems
- Management of Large Projects
- Operational Management
- Analysis and Decision Aid
- Sales and Business Development
- CentraleSupélec Entrepreneur

CAPSTONE INTERNSHIP

To complete your 3rd year and obtain your diploma, you must complete a 23-week internship in a company or research laboratory in an engineering-level position. You will write a thesis based on the experience acquired during this internship. The choice of subject is validated, after consultation with the company's internship supervisor, by the heads of the concentration and the focus option, who each designate a teacher responsible for the pedagogical follow-up of the project and who guarantees CentraleSupélec excellence. These teachers will remain in contact with you and inform the heads of the concentration and the focus option of the project's progress and the focus option of the project's progress. The Dean of Studies is immediately alerted in the event of a problem. You send the thesis to the heads of the concentration and focus option and then defend it before a jury (the internship jury) composed of at least two teachers and a company manager and chaired by the head of the concentration or the focus option or their representatives. If the thesis is not deemed satisfactory, the heads of the concentration or focus option, or their representatives, may jointly decide to postpone the defense.

KEY ELEMENTS OF THE INTERNSHIP:
- Duration: 23 weeks
- In a company or in a laboratory
- In an engineering position
- In relation with the Concentration followed
- Validation:
 - Submission of a thesis
 - Defense in front of a jury

THE 8 MAJORS (AREA SPECIALIZATIONS) & THEIR CONCENTRATIONS

<table>
<thead>
<tr>
<th>Civil Engineering and Transportation</th>
<th>Energy</th>
<th>Large-Scale Interactive Systems</th>
<th>Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil and Urban Engineering systems</td>
<td>Energy Resources</td>
<td>Control Engineering</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Aerospace and Transport systems</td>
<td>Power and Energy Grids</td>
<td>Design and System Sciences</td>
<td>Software Science</td>
</tr>
<tr>
<td></td>
<td>Energy Efficiency</td>
<td>Supply Chain and Operations Management</td>
<td>Design of Computing Platforms</td>
</tr>
<tr>
<td></td>
<td>Sustainable Energy Systems</td>
<td></td>
<td>Cybersecurity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics and Data Science</th>
<th>Physics and Nanotechnology</th>
<th>Communicating Systems and Internet of Things</th>
<th>Living - Health/Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information and Data Sciences</td>
<td>Photonics and nanosystems engineering</td>
<td>Information and Communication Engineering</td>
<td>Environment and sustainable production</td>
</tr>
<tr>
<td>Mathematics, Modeling, Financial Engineering</td>
<td>Quantum Engineering</td>
<td>Digital and Living</td>
<td>Healthcare and Biomedical Services</td>
</tr>
<tr>
<td>Information and Data Sciences</td>
<td></td>
<td>Electronic Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Apprenticeship, international mobility, diplomas complementary to the engineering program, thematic courses dedicated to research, business creation, computer science and cybersecurity, gap year...

The CentraleSupélec engineering curriculum offers students who wish to do so increased possibilities for personalization via specific courses. Each student can thus explore different facets of the engineer and forge a project in their own image.

CUSTOMIZE YOUR DEGREE TRACK

THEMATIC PROGRAMS

1ST/2ND YEAR:
- ST, ELECTIVE COURSES
- INTERNSHIPS
- RESEARCH

3RD YEAR:
- MAJORS, PROFESSIONAL FOCUS OPTIONS

BUILD YOUR PROFESSIONAL PROJECT:

<table>
<thead>
<tr>
<th>Year</th>
<th>Professional Focus Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Interviews with Engineers</td>
</tr>
<tr>
<td></td>
<td>Career panels</td>
</tr>
<tr>
<td></td>
<td>Meetings with engineers</td>
</tr>
<tr>
<td>2nd</td>
<td>Gap Year Forum</td>
</tr>
<tr>
<td>3rd</td>
<td>Professional Focus Options</td>
</tr>
<tr>
<td></td>
<td>Capstone internship</td>
</tr>
</tbody>
</table>
THE RESEARCH PROGRAM CS+R

The Research Training Project Pole enables around 20% of students to carry out long-term research projects during their studies. For those who wish to go even further, the School offers the CS+R Research Program, based on completing a research project immersed in a laboratory for three years and offering specific activities.

Comprehensive in terms of professional development, acquisition of business know-how, scientific culture and expertise, this pathway leads engineering students to a level of competence equivalent to the end of a 1st-year doctorate.

Each student carries out an ambitious research project, progressively over three years, under the guidance of a scientific mentor.

Program objectives:
• To offer students with a passion for science and a desire to play a part in creating knowledge an appropriate pathway.
• Lead students naturally towards a doctorate, a diploma recognized for leading major international corporate projects and necessary for an academic career.
• Familiarize students with the research world and help them build a solid professional network.
• Train engineers capable of forging strong links between academic research and the corporate world, a key to successful innovation.

Reminder:
• 3-year program, with annual commitment
• 40 places
Contact:
Bruno Palpant
Head of the program
bruno.palpant@centralesupelec.fr

THE ENTREPRENEURSHIP PROGRAM CS+E

The program:
• is based on a foundation of knowledge that is essential to business creation;
• allows for the integration of international experiences that make sense in the context of business creation;
• ensures a specific coloring to the theme of the student’s project;

while maintaining the high standards required to graduate from the CentraleSupélec engineering program.

The program is closely linked to the School’s incubator and Accelerator (Paris-Saclay campus and Station F).

Program objectives:
• To offer a program to students who are passionate about entrepreneurship and wish to master the methods and tools to create their own business.

Reminder:
• 2-year minimum commitment
• 40 places
Contact:
Christophe Rittano
Head of the program
christophe.rittano@centralesupelec.fr

THE COMPUTER SCIENCE PROGRAM CS+IS

CentraleSupélec engineering students have the opportunity to follow a two-year in-depth training program in computer security on the Rennes campus.

For students admitted to this program, certain standard pedagogical activities will be replaced by specific activities in respect of the development of the skills displayed by the School.

Program objectives:
• To train CentraleSupélec engineers to be experts of the highest level, capable of understanding and anticipating increasingly complex attacks on the security of computer systems.
• To train those who will be the guarantors of tomorrow’s digital data security. Such experts are rare on the job market today, and their recruitment requires very advanced technical tests.

Reminder:
• 2-year commitment, from 2nd Year
• 30 places
• On the Rennes campus
Contact:
Jean-François Lalande
Head of the program
jean-francois.lalande@centralesupelec.fr
KEY THEME: SUSTAINABLE DEVELOPMENT

The UN Sustainable Development Goals (SDGs) mapping in the 1st and 2nd year engineering courses was carried out in 2020. Focusing on six central SDGs, considered essential to the School for the climate, energy, ecological and social transition, it lists the courses that deal with or evaluate one or more of these 6 SDGs. This map will evolve soon to integrate new pedagogical activities, from 1st Year to 3rd Year, that address or assess these SDGs. Some language courses in 1A and 2A also address or assess these SDGs. Not listed are the courses that only address the SDGs without really dealing with them.

<table>
<thead>
<tr>
<th>Core curriculum & semester-long courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Management 1A</td>
<td>Addressed</td>
</tr>
<tr>
<td>Corporate Finance 1A</td>
<td>Addressed</td>
</tr>
<tr>
<td>Economics 2A</td>
<td>Addressed</td>
</tr>
<tr>
<td>Climate Science 2A</td>
<td>Addressed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineer Practice Workshops</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>API 1A & 2A</td>
<td>Addressed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science Courses for Engineers 1A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Engineering</td>
<td>Addressed</td>
</tr>
<tr>
<td>Materials</td>
<td>Addressed</td>
</tr>
<tr>
<td>Transport Phenomena</td>
<td>Addressed</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>Addressed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Courses 2A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model based predictive control - Rennes</td>
<td>Addressed</td>
</tr>
<tr>
<td>Renewable Energies</td>
<td>Addressed</td>
</tr>
<tr>
<td>Energy Conversion</td>
<td>Addressed</td>
</tr>
<tr>
<td>Building the city</td>
<td>Addressed</td>
</tr>
<tr>
<td>Chemical Engineering: application to environment & sustainable development</td>
<td>Addressed</td>
</tr>
<tr>
<td>Design Science</td>
<td>Addressed</td>
</tr>
<tr>
<td>Strategy, Marketing and Organization</td>
<td>Addressed</td>
</tr>
<tr>
<td>Environmental economics, energy and sustainable development</td>
<td>Addressed</td>
</tr>
<tr>
<td>HSS: Societal issues</td>
<td>Addressed</td>
</tr>
<tr>
<td>HSS: Science, technology, society</td>
<td>Addressed</td>
</tr>
<tr>
<td>HSS: Innovation, arts and creativity</td>
<td>Addressed</td>
</tr>
<tr>
<td>HSS: Individuals - work - organizations</td>
<td>Addressed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Projects Pole</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P02 City Faber Lab</td>
<td>Addressed</td>
</tr>
<tr>
<td>P04 Data Science</td>
<td>Addressed</td>
</tr>
<tr>
<td>P07 Engineering for the Environment</td>
<td>Addressed</td>
</tr>
<tr>
<td>P11 IoT</td>
<td>Addressed</td>
</tr>
<tr>
<td>P16 Agile and Responsible Economic Mutations</td>
<td>Addressed</td>
</tr>
<tr>
<td>P17 New Energy Concepts</td>
<td>Addressed</td>
</tr>
<tr>
<td>P20 Biotechnology and Health</td>
<td>Addressed</td>
</tr>
<tr>
<td>P21 Smart and Secure Life</td>
<td>Addressed</td>
</tr>
<tr>
<td>P23 Tech For Good and Design Thinking</td>
<td>Addressed</td>
</tr>
<tr>
<td>P24 Ecological & Inclusive Transition</td>
<td>Addressed</td>
</tr>
</tbody>
</table>
KEY THEME: INDUSTRY OF THE FUTURE

LEVERS OF THE "ALLIANCE INDUSTRIE DU FUTUR" REFERENCE SYSTEM

<table>
<thead>
<tr>
<th>Advanced production technologies</th>
<th>Connected, controlled and optimized factories and lines/plots</th>
<th>New economic and social models, strategies and alliances</th>
<th>Connected objects and industrial internet</th>
<th>New approach to people at work, innovative organization and management</th>
<th>Integrated customer/supplier relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours SPI 1re année</td>
<td>Electrical Energy</td>
<td>Networks ans Security</td>
<td>Industrial Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Challenge Term 2 (ST2)</td>
<td>Energy Transition</td>
<td>Earth Observation for our Environment and Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Challenge Term 4 (ST4)</td>
<td>Systems Monitoring and Prognostics for Risk Management</td>
<td>Energy and Climate</td>
<td>The IoT and Related Information Processing</td>
<td>Digital Transformation and Integrated Engineering Digital Mock-Up and Life Cycle of Structures and Vehicles</td>
<td></td>
</tr>
<tr>
<td>Elective Courses 2A</td>
<td>Energy Conversion</td>
<td>Integrated MEMS sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Models and Systems for Big Data management</td>
<td>Quantum and Statistical Physics</td>
<td>Machine Learning</td>
<td>New Networking Paradigms</td>
<td>Models and Systems for Big Data management</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>New Networking Paradigms</td>
<td>Machine Learning</td>
<td></td>
<td>New Networking Paradigms</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>Models and Systems for Big Data management</td>
<td>Machine Learning</td>
<td></td>
<td>Models and Systems for Big Data management</td>
</tr>
<tr>
<td>2.4</td>
<td>Biomechanics and Life Materials</td>
<td>Maintenance and Industry 4.0</td>
<td>Chemical Engineering: application to environment and sustainable production</td>
<td>From Transistor to Complex Analog System</td>
<td>Embedded Systems and Internet of Things</td>
</tr>
<tr>
<td>2.5</td>
<td>Bioengineering and Life Materials</td>
<td>Environmental economics</td>
<td>Cloud computing and distributed computing</td>
<td>Strategy, Marketing and Organization</td>
<td>Interactive Robotic Systems</td>
</tr>
<tr>
<td>2.6</td>
<td>Robust Electronic and Embedded Systems</td>
<td>Cloud Computing and Distributed Computing</td>
<td>Chemical Engineering: application to environment and sustainable production</td>
<td>From Transistor to Complex Analog System</td>
<td>Embedded Systems and Internet of Things</td>
</tr>
<tr>
<td>Engineering Challenge Term 5 (ST5)</td>
<td>Complex Industrial and Critical Systems with Dominant Software</td>
<td>Intelligence énergétique et smart building</td>
<td></td>
<td>Control of (Bio)Processes for Sustainable Production</td>
<td>Multi-Energy Systems</td>
</tr>
<tr>
<td>Elective Courses 2A</td>
<td>Optimization and Management of Flows of Complex Systems</td>
<td>Circular Economy and Industrial Systems</td>
<td></td>
<td>Efficiency of On-Board Energy Systems</td>
<td></td>
</tr>
<tr>
<td>Project Poles</td>
<td>P12 - Makers</td>
<td>P07 - Engineering for the Environment</td>
<td>P04 - Data Science</td>
<td>P18 - Production, Supply Chain & Operations</td>
<td>P02 - City Faber Lab</td>
</tr>
<tr>
<td>3rd Year Concentrations</td>
<td>P22 - Cyber-Physical Systems</td>
<td>P17 - New Energy Concepts</td>
<td>P10 - Artificial Intelligence</td>
<td></td>
<td>P19 - Robotics</td>
</tr>
<tr>
<td>Additive Manufacturing Design</td>
<td>P25 - Intelligent Vehicles</td>
<td>P24 - Ecological & Inclusive Transition</td>
<td>P11 - IoT (Internet of Things)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Engineering</td>
<td>Data and information Science</td>
<td>Energy Efficiency</td>
<td>Intelligent Systems and Networks</td>
<td>Design and System Sciences</td>
<td>Construction and Urban Civil Engineering</td>
</tr>
<tr>
<td>Control Engineering</td>
<td>Information Systems Architecture</td>
<td>Energy Resources</td>
<td>Mobile, Electromagnetic and Nano-electric Communicating Systems</td>
<td>Mechanics and Aerospace Engineering</td>
<td>Supply Chain and Operations Management</td>
</tr>
<tr>
<td>Professional focus options</td>
<td>Software Science</td>
<td>Sustainable Environment and Production</td>
<td>Artificial Intelligence</td>
<td></td>
<td>Operational management</td>
</tr>
<tr>
<td>• Research professions</td>
<td></td>
<td>Energy Network</td>
<td>Cyber Security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CentraleSupélec Entrepreneur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approaches the topic (awareness) | Addresses the topic (implementation, further study) | Assessment (validation of knowledge)