

	Course number and name		
Number	95000003		
Name	Name Physics 1		
	<u>Física general 1</u>		
Semester	Y1-S1		

Credits and contact hours			
ECTS Credits	6		
Contact hours	75		

Coordinator's name	Federico Cebollada Baratas
--------------------	----------------------------

Specific course information

Description of course content

A course on physics covering the most relevant topics of classical mechanics and electromagnetism at an undergraduate level.

List of topics to be covered

Mechanics: Vector analysis, Kinematics, Particle dynamics, Work and energy, Particle systems, Rigid bodies.

Electromagnetism: Electrostatics, Conductors and capacitors, Electric current, Magnetic field, Electromagnetic induction.

Experimental physics: Introduction to error theory; Mechanics: physical pendulum, free fall, inclined plane; Electromagnetism: multimeter, charge and discharge process in capacitors, measurement instruments, meter bridge.

Prerequisites or co-requisites

The basic knowledge of mathematics and physics that the students are expected to get during secondary education.

Course category in the program					
\underline{X} R (required)	E (elective)	SE (selective elective)			

Specific goals for the course

Specific outcomes of instruction

RA1: Learning and understanding the physical laws and theories ruling the behaviour of the Universe.

RA2: Learning how to carry out physical reasoning to get the ability to solve problems using the basic laws of Physics.

RA3: Understanding the relevance of experiments as the sole source to prove a physical theory.

RA4: Getting the qualitative and quantitative knowledge of the basic physical phenomena required to gain insight into those of higher complexity.

RA5: Understanding the basic natural phenomena leading to nowadays technology.

Student outcomes addressed by the course

CG01, CG02, CG03, CG04, CG05, CG06, CG07, CG08, CG09, CG10, CG11, CG12, CG13, CEB3.

Bibliography and supplemental materials

Bibliography:

- 1. P.A. tippler and G. Mosca, Physics for Scientist and Engineers, 6th edition (W.H. Freeman, New York, 2007).
- 2. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers, 9th edition (Brooks/Cole, Boston, 2014).
- 3. H. D. Young and R. A. Freedman, R.A, University Physics, 13th edition (Pearson, San Francisco, 2012).
- 4. P. Sánchez, V. Alcober, C. Duro, A. Sanz, A. y P. Mareca, Manual del Laboratorio de Física (Dpto. de Publicaciones, E.T.S.I. de Madrid, 2013). Web: http://www-app.etsit.upm.es/departamentos/fis/index.html

Teaching methodology					
X lectures		X problem solving sessions	collaborative actions	X laboratory sessions	
Other:	Tutorial sess	sions			