ANX-PR/CL/001-01
LEARNING GUIDE

SUBJECT
93001070 - Predictive And Descriptive Learning

DEGREE PROGRAMME
09AQ - Master Universitario en Ingenieria de Telecomunicacion

ACADEMIC YEAR & SEMESTER
2020/21 - Semester 1
Index

Learning guide

1. Description...1
2. Faculty...1
3. Prior knowledge recommended to take the subject...2
4. Skills and learning outcomes ..2
5. Brief description of the subject and syllabus...3
6. Schedule...7
7. Activities and assessment criteria..9
8. Teaching resources...12
9. Other information..13
1. Description

1.1. Subject details

<table>
<thead>
<tr>
<th>Name of the subject</th>
<th>93001070 - Predictive And Descriptive Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of credits</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Type</td>
<td>Optional</td>
</tr>
<tr>
<td>Academic year of the programme</td>
<td>Second year</td>
</tr>
<tr>
<td>Semester of tuition</td>
<td>Semester 3</td>
</tr>
<tr>
<td>Tuition period</td>
<td>September-January</td>
</tr>
<tr>
<td>Tuition languages</td>
<td>English</td>
</tr>
<tr>
<td>Degree programme</td>
<td>09AQ - Master Universitario en Ingenieria de Telecomunicacion</td>
</tr>
<tr>
<td>Centre</td>
<td>09 - Escuela Tecnica Superior de Ingenieros de Telecomunicacion</td>
</tr>
<tr>
<td>Academic year</td>
<td>2020-21</td>
</tr>
</tbody>
</table>

2. Faculty

2.1. Faculty members with subject teaching role

<table>
<thead>
<tr>
<th>Name and surname</th>
<th>Office/Room</th>
<th>Email</th>
<th>Tutoring hours *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eduardo Lopez Gonzalo (Subject coordinator)</td>
<td>C-330</td>
<td>eduardo.lopez@upm.es</td>
<td>Sin horario. Appointment arranged by email</td>
</tr>
<tr>
<td>Luis Alfonso Hernandez Gomez</td>
<td>C-330</td>
<td>luisalfonso.hernandez@upm.es</td>
<td>Sin horario. Appointment arranged by email</td>
</tr>
</tbody>
</table>

* The tutoring schedule is indicative and subject to possible changes. Please check tutoring times with the faculty member in charge.
3. Prior knowledge recommended to take the subject

3.1. Recommended (passed) subjects

The subject - recommended (passed), are not defined.

3.2. Other recommended learning outcomes

- It is mandatory to follow this course simultaneously with the subject Machine Learning Lab
- Previous exposure to a programming language, such as MATLAB, R or Python
- Elementary course in Statistics

4. Skills and learning outcomes *

4.1. Skills to be learned

CG1 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CG2 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

CG4 - Que los estudiantes sepan comunicar sus conclusiones ?y los conocimientos y razones últimas que las sustentan? a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CT1 - Capacidad para comprender los contenidos de clases magistrales, conferencias y seminarios en lengua inglesa.

CT2 - Capacidad para dinamizar y liderar equipos de trabajo multidisciplinares.
CT3 - Capacidad para adoptar soluciones creativas que satisfagan adecuadamente las diferentes necesidades planteadas.

CT4 - Capacidad para trabajar de forma efectiva como individuo, organizando y planificando su propio trabajo, de forma independiente o como miembro de un equipo.

CT5 - Capacidad para gestionar la información, identificando las fuentes necesarias, los principales tipos de documentos técnicos y científicos, de una manera adecuada y eficiente.

4.2. Learning outcomes

RA305 - Capability to design, develop and evaluate machine-learning techniques for a wide range of application areas

* The Learning Guides should reflect the Skills and Learning Outcomes in the same way as indicated in the Degree Verification Memory. For this reason, they have not been translated into English and appear in Spanish.

5. Brief description of the subject and syllabus

5.1. Brief description of the subject

This course covers the concepts and principles of a large variety of Machine Learning methods: from traditional Machine Learning models to Deep Learning. The course introduces main principles in Machine Learning: supervised, unsupervised and reinforcement learning, though main emphasis is on predictive and descriptive learning as reinforcement learning is covered in a subsequent course. Methodological issues such as model assessment and selection, and overfitting are discussed.

The course starts introducing the most relevant traditional predictive or supervised techniques: as different types of regression, generalized linear models, k-nearest neighbor classifier, classification and regression trees, ensemble methods (Bagging, Random Forests and Boosting) and kernel methods and Support Vector Machines. Then the course addresses traditional descriptive or unsupervised techniques: principal components analysis and clustering methods (k-means and hierarchical clustering). From this basic background the course presents the recent and very powerful Deep Learning models: students learn from the basics of Neural Networks to the most common architectures of Feed-Forward Networks, Convolutional Networks and Recurrent Neural Networks.

This course covers the principles and methodology for the design, evaluation and selection of a large variety of Machine Learning methods for supervised and unsupervised learning.
The students will understand the fundamentals and important topics in statistical machine learning. This outcome represents a fundamental ingredient in the training of a modern data scientist providing a solid base for its use on a wide range of applications in science and industry. In particular students will understand the ideas behind the most used and widely applicable techniques for regression, classification and clustering. Through several examples and use cases, students will also learn how important is to accurately assess the performance of a model. They will also acquire solid criteria on what could be best model for a given data and task. By the end of the course, students should be able to:

- Understand the fundamentals of the most used models and techniques for predictive and descriptive learning.
- Design a proper methodology for accurately assessing and gaining knowledge from the use of each one of the particular machine learning techniques.
- Know the strengths and weaknesses of the various approaches in order to choose the best models for a given data and application scenario.

5.2. Syllabus

1. **Introduction to Machine Learning**
 1.1. What is statistical learning?
 1.2. Types of Machine Learning
 1.3. Assessing Model Accuracy

2. **Linear Regression**
 2.1. Simple and Multiple Linear Regression
 2.2. Linear Regression and Distributed Machine Learning Principles
 2.3. Interpreting Regression Coefficients
 2.4. Model Selection and Qualitative Predictors
 2.5. Interactions and Nonlinearity
 2.6. Comparison of Linear Regression with KNN

3. **Classification**
 3.1. Logistic Regression
 3.2. Bayes classifier and Linear Discriminant Analysis
3.3. Classification error analysis

3.4. Quadratic Discriminant Analysis

3.5. K-Nearest Neighbors

3.6. A Comparison of Classification Methods: Logistic Regression, LDA, QDA and KNN

4. Resampling methods
 4.1. Cross-validation
 4.2. Bootstrap

5. Linear Model Selection and Regularization
 5.1. Feature selection
 5.2. Optimal Model selection
 5.3. Regularization
 5.4. Dimension Reduction
 5.5. High-Dimensional Data

6. Moving Beyond Linearity
 6.1. Generalized Linear Models and Generalized Additive Models

7. Tree-Based Methods
 7.1. Decision trees
 7.2. Bagging
 7.3. Random Forests
 7.4. Boosting

8. Support Vector Machines
 8.1. Maximal Margin Classifier
 8.2. Support Vector Classifiers
 8.3. Kernels and Support Vector Machines
 8.4. Relationship to Logistic Regression

9. Descriptive Learning
 9.1. Supervised vs Unsupervised learning
 9.2. Principal Components Analysis
 9.3. Clustering Methods
9.4. K-means

9.5. Hierarchical Clustering

9.6. Practical Issues in Clustering

10. Introduction to Deep Learning

10.1. Simple Neural Networks models

10.2. Feed-forward Networks

10.3. Convolutional Networks

10.4. Recurrent Networks

10.5. Introduction to advanced Deep Learning models: autoencoders, Generative Adversarial Networks (GANs)
6. Schedule

6.1. Subject schedule*

<table>
<thead>
<tr>
<th>Week</th>
<th>Face-to-face classroom activities</th>
<th>Face-to-face laboratory activities</th>
<th>Distant / On-line</th>
<th>Assessment activities</th>
</tr>
</thead>
</table>
| 1 | Activities Chapter 1
Duration: 02:00
Lecture | Activities Chapter 1
Duration: 02:00 | Lecture |
| | Activities Chapter 2
Duration: 02:00
Lecture | Activities Chapter 2
Duration: 02:00 | Lecture |
| 2 | Activities Chapter 3
Duration: 04:00
Lecture | Activities Chapter 3
Duration: 04:00 | Lecture |
| 3 | Activities Chapter 4
Duration: 02:00
Lecture | Activities Chapter 4
Duration: 02:00 | Lecture |
| | Activities Chapter 5
Duration: 02:00
Lecture | Activities Chapter 5
Duration: 02:00 | Lecture |
| 4 | Activities Chapter 6
Duration: 01:00
Lecture | Activities Chapter 6
Duration: 01:00 | Lecture |
| | Activities Chapter 7
Duration: 03:00
Lecture | Activities Chapter 7
Duration: 03:00 | Lecture |
| 5 | Activities Chapter 8
Duration: 04:00
Lecture | Activities Chapter 8
Duration: 04:00 | Lecture |
| 6 | Activities Chapter 9
Duration: 04:00
Lecture | Activities Chapter 9
Duration: 04:00 | Lecture |
| 7 | Activities Chapter 10 (10.1, 10.2)
Duration: 04:00
Lecture | Activities Chapter 10 (10.1, 10.2)
Duration: 04:00 | Lecture |
| 8 | Activities Chapter 10 (10.3)
Duration: 04:00
Lecture | Activities Chapter 10 (10.3)
Duration: 04:00 | Lecture |
| 9 | Activities Use Case Review
Duration: 02:00
Problem-solving class | Activities Use Case Review
Duration: 02:00
Problem-solving class | Evaluation: Machine Learning use case
Individual presentation
Continuous assessment
Not Presental
Duration: 02:00 |
<table>
<thead>
<tr>
<th></th>
<th>Activities Chapter 10 (10.4)</th>
<th>Activities Chapter 10 (10.4)</th>
<th>Evaluation: Machine Learning use case (continuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Duration: 02:00 Lecture</td>
<td>Duration: 02:00 Lecture</td>
<td>Individual presentation Continuous assessment Not Presental Duration: 02:00</td>
</tr>
<tr>
<td>11</td>
<td>Activities Chapter 10 (10.4)</td>
<td>Duration: 02:00 Lecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activities Chapter 10 (10.5)</td>
<td>Duration: 02:00 Lecture</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Activities Chapter 10 (10.5)</td>
<td>Duration: 04:00 Lecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activities Deep Learning Review</td>
<td>Duration: 02:00 Problem-solving class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activities Final Project discussions</td>
<td>Duration: 02:00 Problem-solving class</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Activities Deep Learning Review</td>
<td>Duration: 02:00 Problem-solving class</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Final project evaluation Group presentation Continuous assessment Not Presental Duration: 00:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation: Machine Learning use case Individual presentation Final examination Not Presental Duration: 02:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final project evaluation Group presentation Final examination Not Presental Duration: 00:15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Depending on the programme study plan, total values will be calculated according to the ECTS credit unit as 26/27 hours of student face-to-face contact and independent study time.

* The schedule is based on an a priori planning of the subject; it might be modified during the academic year, especially considering the COVID19 evolution.
7. Activities and assessment criteria

7.1. Assessment activities

7.1.1. Continuous assessment

<table>
<thead>
<tr>
<th>Week</th>
<th>Description</th>
<th>Modality</th>
<th>Type</th>
<th>Duration</th>
<th>Weight</th>
<th>Minimum grade</th>
<th>Evaluated skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Evaluation: Machine Learning use case</td>
<td>Individual presentation</td>
<td>No Presential</td>
<td>02:00</td>
<td>40%</td>
<td>/ 10</td>
<td>CG4, CT3, CT4, CT1, CT5, CG2, CG1</td>
</tr>
<tr>
<td>10</td>
<td>Evaluation: Machine Learning use case (continuation)</td>
<td>Individual presentation</td>
<td>No Presential</td>
<td>02:00</td>
<td>%</td>
<td>/ 10</td>
<td>CT2, CT3, CT4, CT1, CG4, CT5, CG2, CG1</td>
</tr>
<tr>
<td>17</td>
<td>Final project evaluation</td>
<td>Group presentation</td>
<td>No Presential</td>
<td>00:15</td>
<td>60%</td>
<td>/ 10</td>
<td>CG4, CT2, CT3, CT4, CT1, CT5, CG2, CG1</td>
</tr>
</tbody>
</table>

7.1.2. Final examination

<table>
<thead>
<tr>
<th>Week</th>
<th>Description</th>
<th>Modality</th>
<th>Type</th>
<th>Duration</th>
<th>Weight</th>
<th>Minimum grade</th>
<th>Evaluated skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Evaluation: Machine Learning use case</td>
<td>Individual presentation</td>
<td>No Presential</td>
<td>02:00</td>
<td>40%</td>
<td>/ 10</td>
<td>CT4, CT1, CT5, CG2, CG4, CT3, CG1</td>
</tr>
<tr>
<td>17</td>
<td>Final project evaluation</td>
<td>Group presentation</td>
<td>No Presential</td>
<td>00:15</td>
<td>60%</td>
<td>/ 10</td>
<td>CG4, CT2, CT3, CT4, CT1, CT5, CG2, CG1</td>
</tr>
</tbody>
</table>
7.1.3. Referred (re-sit) examination

<table>
<thead>
<tr>
<th>Description</th>
<th>Modality</th>
<th>Type</th>
<th>Duration</th>
<th>Weight</th>
<th>Minimum grade</th>
<th>Evaluated skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation: Machine Learning use case</td>
<td>Individual presentation</td>
<td>Face-to-face</td>
<td>00:10</td>
<td>40%</td>
<td>10</td>
<td>CT1, CG1, CT4, CG4, CT3, CG2, CT5</td>
</tr>
<tr>
<td>Final project evaluation</td>
<td>Group presentation</td>
<td>Face-to-face</td>
<td>00:15</td>
<td>60%</td>
<td>10</td>
<td>CT1, CT4, CG4, CT3, CT2, CG2, CT5, CG1</td>
</tr>
</tbody>
</table>

7.2. Assessment criteria

Students will be qualified through continuous evaluation by default. According to the Normativa de Evaluación del Aprendizaje de la Universidad Politécnica de Madrid, students willing to renounce to continuous evaluation must complete the Moodle task entitled "Renounce to continuous evaluation" before the fourth week of the semester (deadline will be announced in Moodle).

Evaluation will assess if students have acquired all the competences of the subject. Thus, evaluation through final assessment will be carried out considering all the evaluation techniques used in continuous evaluation (EX, ET, TG, etc.), and will be celebrated in the exam period approved by Junta de Escuela for the current academic semester and year. Evaluation activities that assess learning outcomes that cannot be evaluated through a single exam can be carried out along the semester.

Extraordinary examination will be carried out exclusively by the final assessment method.

Continuous assessment will consist of:

- Individual presentations to demonstrate skills in knowing the basics of machine learning models will be made by
mid-semester

(40% of final grade).

- A final collaborative project will be developed to be evaluated by the end of the semester. Evaluation will be focused on the theoretical knowledge and criteria needed to design, select, and evaluate different machine learning models, and in particular deep learning architectures, in practical applications.

(final project assessment will represent 60% of the final grade).

Final assessment:

Those students that have renounced to continuous evaluation should address a final examination including both individual presentations to demonstrate theoretical knowledge on deep learning models (40% of final grade) and their final collaborative project (60% of the final grade).

Extraordinary examination:

Extraordinary examination consists of an individual presentations to demonstrate theoretical knowledge on machine learning models (40% of final grade) and a final collaborative project (60% of the final grade).
8. Teaching resources

8.1. Teaching resources for the subject

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural Networks and Deep Learning</td>
<td>Web resource</td>
<td>http://neuralnetworksanddeeplearning.com/index.html</td>
</tr>
</tbody>
</table>
9. Other information

9.1. Other information about the subject

For on-line learning activities we will use UPM Moodle platform and tools. Moodle, GitHub and Youtube will be the environments to share specific course materials. Specific communication frameworks such as Skype for Business or Microsoft Teams could be used allowing UPM students to interact with instructors.

The increasing relevance of technological developments based on Machine Learning makes this course an educational activity directed to contribute to Goal 4.4 in Sustainable Development Goals (SDGs) 2030 United Nations Agenda, empowering our students with relevant skills, including technical and vocational skills, for employment, decent jobs and entrepreneurship.